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ABSTRACT

UActive control of bending vibrations in a cantilever beam
is examined using a digital computer model of beam and control-

ler. The controller uses the discretized beam equation of

motion in a linear control system, which uses a Luenberger ob-

server to reconstruct modal amplitudes and velocities from the

sensor output. Feedback gains obtained from a steady state

optimal regulator drive a force actuator. The model is used

to examine three areas of active control of bending vibrations.

First, impact on control effectiveness is investigated for

iterative changes in elements of the state weighting matrix,

part of the quadratic performance index minimized for the steady

state optimal regulator. Second, the steady state optimal

regulator is replaced with classical control through addition

of open loop zeroes to the system transfer function. Third,

the sensor model is changed to include position and rate in-

formation and rate information only. State weighting matrix

element changes selectively produce increased damping of the

mode associated with the changed element. Breakdown of the

observer model, and instability, occurs when the change in an

element exceeds a limit peculiar to that element and its rela-

tive magnitude. Control through classical feedback compensa-

tion is at least as effective as optimal control by the steady

state optimal regulator. Addition of rate information to the

sensor model causes instability because of numerical inaccura-

cies in the solution of the linear equation producing the

Luenberger observer state estimation.
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INTRODUCTION

Increasing interest in construction of large space

structures such as solar energy collectors and large orbit-

ing radio telescopes, present unprecedented problems in flexi-

ble satellite attitude control. Separation of control and

structural frequency bandwidths to control undesirable

structural vibrations may not be possible for these large

space vehicles. Active controllers applied to structural vi-

brations may provide an answer.

Balas (Ref 1) described a method for applying active con-

trol to a simply supported beam. The equation of motion of

the beam in bending is discretized by the normal modes approx-

imation. This information is incorporated in a linear control

system, where information from the sensor is used to estimate

the modal amplitudes and velocities through a Luenberger ob-

server. The steady state optimal regulator produces control

proportional to the modal amplitudes and velocities by mini-

mizing a performance index. This control is applied to the

beam by a force actuator.

Hungerford (Ref 4) implemented Balas' method in a digital

computer model of a cantilever beam. He showed that, at least

within the limits of his investigation, the method of control

appeared feasible for controlling bending vibrations in a

cantilever beam. Hungerford looked at the influence of con-

trol weighting, sensor and actuator location, and observer

error on control effectiveness. In this thesis, the influence

of state weighting changes, different sensor models, and the



application of classical control techniques are investigated.

The steady state optimal regulator applied to a finite

number of states in a beam provides incomplete control; that

is, an infinite number of states remain uncontrolled by the

regulator regardless of the number of states controlled.

For such a system, there is a need for determining the effects

of changing the weighting in the quadratic performance index,

which is minimized to produce the "optimal" regulator.

Hungerford investigated the effect of changing the control

weighting matrix on the control effectiveness. The first pur-

pose of this thesis was to complete the study of the effect of

weighting changes by determining the effect of state weighting

matrix element changes on the effectiveness of control.

During the study of the optimal regulator, the root locus

indicated the effects of weighting changes. Examination of

several root locus diagrams suggested the application of

classical control techniques. By placing zeroes at selected

points on the root locus, it was expected that effective con-

trol might be acheived. Examination of simple feedback com-

pensation applied to a vibrating beam became a second purpose

for this thesis.

The Luenberger observer in Hungerford's study used input

from a position sensor. Foreseeing application to physical

systems, some alternatives in selection of sensors is desirable.

The third purpose of this thesis was to expand Hungerford's

study to include a rate sensor and a position-rate sensor.

From a starting point offered by Balas, Hungerford began

an investigation of the active control of bending vibrations
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in a cantilever beam. The overall purpose of this thesis was

to further that investigation. The specific areas examined

were: the effect of changing elements of the state weighting

matrix; the application of simple feedback compensation; and

the use of rate and position-rate sensors.
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JI

ANALYTIC TECHNIQUES

The basic vehicle for most of the investigation was a

digital computer model of a cantilever beam, Luenberger obser-

ver, and optimal regulator developed by Hungerford.

For the investigation of state weighting changes and

different sensor types, control was applied to the first two

normal modes of bending vibration, with a third mode included

as a residual mode. This simplified the study without loss

of generality, and assured compatability with the "Total"

program, developed by Larimer (Ref 5) for control systems

r analysis and design. "Total" was used to generate root locus

diagrams from the linear system matrices produced by the

Hungerford's linear system model.

Hungerford's computer model of the system is based on

the following block diagram:

v = state vector
v = estimated state vector
[A] = coefficients from discretized

beam equation
(01 = control coefficients matrix

Cl = output coefficients matrix
JG1 = feedback gain matrix
fKj = observer gain matrix
u' = control input
f = control force signal

In order to form the state equations we consider the

equation of motion for a cantilever beam with no applied

-4-



external forces:

-E4 2______ y(x,t)(1-EI C4Y(x't) m 2x4  t2

where the stiffness, El, and the mass per unit length, m, are

constant along the beam length. The equation is discretized

by using a normal mode approach where:

y(xt) = i) (2)

The normal modes gi(x) are found by solution of the special por-

tion of eq 1, and they represent the mode shapes. The modal

amplitudes ui (t) form the basis of the linear system model.

The linear system is constructed on a state vector z

where:

z = v T eT v
-- c 1 - I -r I

v = ui (t) ui (t) i=1,211 (3)

v = IiT (t) uIT(t)T i=3

e = v - v c

The subscripts c and r refer to the controlled and residual

modes, respectively. The linear system representing the

* cantilever beam, Luenberger observer, and steady state optimal

regulator has the form:
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[A I+ (B)JGI C [B~GI

z = (o] :tAcI - [KI[Ccl fKr

[G (B G

rl I rjI 'I r]

The subscripts on the control and output coefficient matrices

J3and c refer to those coefficients associated with the

controlled and residual mode, respectively. For a complete

discussion of the assembly of this linear system matrix, the

reader is referred to Ref 4.

For investigating system time response, eq 4 can be in-

tegrated. However, a root locus may be constructed from the

open loop transfer function which has the form:

I fC1"' [[Iii [A]] - £B (5)

The matrices appearing in this formula may be obtained from

the construction of the linear system model. The solution of

eq 5 and the generation of the associated root locus diagram

may be accomplished merely by loading the appropriate matrices

into the "Total" program and executing the required options.

An example of the use of "Total" for generation of the open

loop transfer function and root locus diagram may be found in

Appendix A.

To investigate a certain state weighting configuration

or sensor type, the following steps were taken to produce a

root locus diagram for analysis of control effectiveness.

First, beam length, width, thickness, stiffness, and mass

per unit length were selected. Sensor and actuator locations,

type of sensor, observer pole offset, and state and control

-6-



weightings were input to the linear system model with the beam
parameters. The coefficient matrix in eq 4 was produced along

with the component matrices (Ac ], , [Bcl, JB, ee, N Crl ,

JGJ, and [KI. At this point, if time response information

was desired, the linear system model was numerically integrated.

The matrices required for solution to eq 5 were loaded into

"Total" and a root locus diagram was generated. For the in-

vestigation of classical control application, the same steps

were followed. However, options of the "Total" program allow

replacement of the feedback transfer function produced by the

steady state optimal regulator with any desired transfer func-

tion.

... .... . ... .. .. . II. . .'. . . r ... ... .I/ .. . . ....4



EFFECT OF CHANGING ELEMENTS OF STATE WEIGHTING MATRIX

There have been several suggestions from various sources

for picking the elements of the diagonal state weighting matrix

(F] in the performance index:

1/2 [F] + fT R dt (6)

For instance, Bryson and Ho (Ref. 2) present a scheme for se-

lection of these elements based on the estimated maximum values

of the states. Balas suggests energy weighting. Neither of

these, when applied to the system in preliminary studies, yield-

ed satisfactory response. The first investigation in this

thesis, then, was a systematic exploration of the effect of

changing each element of the state weighting matrix.

As a starting point, a configuration was selected that

was previously shown to be stable using the weightings as pick-

ed by Hungerford. An aluminum beam 3 meters long, 3 cm wide

and .5 cm thick was chosen. The observer poles were set ten

units to the left of the average real value of the system poles.

For the purpose of this examination, sensor and actuator loca-

tions were picked sufficiently far from any node to delete the

effects of locating close to a node. On a 3 meter cantilever

beam, a position sensor at 1.4 m from the clamped end and a

force actuator at 0.6 m from the clamped end provides the de-

sired conditions.

To begin the study, elements of the state weighting

matrix were set to unity; that is
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[F] = Diag[l 1 1 1] (7)

The elements were separately varied from a value of .01 to

100, incremented by a factor of 10. Analysis of the results

of variation about a base value of 1 suggested that a more

suitable base value would be of order 10 2  Root locus dia-

grams for state weighting element variation from 1, Figs B1

to B5 in Appendix B, show significant changes only when ele-

ments are changed to 100. Unless otherwise noted, the root

locus diagrams and time response results for this and all parts

of the investigation are for unity gain. The gain is the co-

efficient k in the following equation:

u = k[GI%8

where, again, u' is the control input, [GI is the feedback
A

gain matrix, and v is the controlled portion of the state
-c

vector.

To provide a more effective basis for the examination of

effect of weighting charges, a new value was arbitrarily se-

lected as a base from which each diagonal element was alter-

nately varied. Since significant changes in the root locus

2
were previously obtained with weightings of order 10 , a value

of 500 was selected as a new base value. Each diagonal ele-

ment was set to 500, and in alternate executions of the com-

puter program, each element was incremented from 500 to 1,000

to 2,000. Again, a root locus for each case may be found in

Appendix B, Figs B6 to B9.

For these weighting variations, significant effects of
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weighting changes were noticed in the root locus diagrams.

The resulting movement of open loop zeroes in some case pro-

duced changes in the branch patterns. More importantly the

closed loop pole locations for a unity gain system shifted

significantly with respect to one another. For variations of

the first two state weightings, these shifts were only slight-

ly noticeable. Augmenting these first two state weighting

elements to values of 10,000 and 100,000 produced more notable

changes in the root locus diagrams.

At this point in the study it was realized that the value

* of the investigation was limited by a major problem with the

investigative technique. Up to this point the third residual

mode and the Luenberger observer were omitted when the compo-

nent matrices were input to "Total" program. Although "Total"

is capable of handling the 10 x 10 system resulting from four

controlled mode states, four observer error states, and two

residual mode states, the open loop transfer function produced

had a 17th order polynomial numerator and an 18th order poly-

nomial denominator. The order of this transfer function was

too large to be processed by the "Total" program, so the re-

sidual mode and observer had been omitted. However, eight

pole-zero cancellations occur because the forward loop trans-

fer function zeroes are cancelled with the feedback transfer

function poles. Omitting these poles and zeroes produced a

transfer function small enough for the root locus generation

by "Total". In this way the investigation was continued in-

cluding the residual mode and the observer.

Figure 1 shows the resulting analysis performed on the

-10-
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3 meter beam with the first two vibration modes controlled

and the third mode with no control applied. Each element of

the diagonal weighting matrix had a value of 500. The open

loop poles appear on the root locus as x's. The four open

loop poles grouped together near the real axis represent the

observer open loop poles. The three open loop poles located

on the imaginary axis represent the beam model with no nat-

ural damping, and their placement on the imaginary axis

represents the free vibration frequencies of each mode. The

small circles on the diagram represent open loop zeroes, and

the closed loop system poles for a gain of unity appear as

triangles. It is the relative positions of these closed loop

poles that is of interest in this investigation. Changes in

the locations of the closed loop poles on the branches extend-

ing from the imaginary axis represent changes in damping of

the associated mode. These changes are of particular interest

to this investigation.

The syster that appears in Fig 1 serves as a basis for

comparison. State weighting matrix changes will produce

changes in closed loop pole locations from those in this fig-

ure. These shifts represent changes in the system response.

Changes in response can be verified by examination of time

response plots, which were obtained by numerical integration

of the system as formulated in Hungerford's program. Time

response plots of actuator force, displacement at sensor

location modal amplitudes of the first three modes, and the

percentage of the initial energy left in the beam can be

found in Appendix B, Figs Bll to B25, for each system
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ROOT LOCUS FOR 3M BEAM
WEIGHTING = DIAG(500 500 500 500)r

40

* 20

-60 -4020
Figure 1: Root locus diagram for base weighting configuration.

discussed in this section.

As before, weightings in the diagonal state weighting

matrix were changed alternately, with one element varied as

the other three stayed fixed at a value of 500. The amount

of augmentation of each element was based on the previous

analysis omitting the observer and residual mode.

A root locus for a diagonal weighting matrix with the

first state weighting of 100,000 and the remaining weights at

500 is shown in Fig 2a. The most obvious effect of this

heavy weighting on the first mode position state is the

shift to the left of the closed loop pole on the branch

starting at the first mode open loop pole. The effect of

such shift on system response is higher damping on first

mode vibrations, and examination of the time response plots,

Fig B15, verifies increased first mode damping. This weight-

ing also causes changes in the pattern of observer open loop

-12-



ROOT LOCUS FOR 3m BEAM e *60s

WEIGHTING =DIAG(100,000 500 500 500)

+ 40

*20

-60 -40 4
(a)

ROOT LOCUS FOR 3m BEAM 6

WEIGHTING = DIAG(500 10,000 500 500)

0

-so -40 -20
(b)

Figure 2: Root locus diagram~ for first two, state weighting variations.
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ROOT LOCUS FOR 3m BEAM 60

WEIGHTING = DIAG(500 500 2000 500)

4 40

1420

. . _ _ _ _

-60 -40 -20

(a)

ROOT LOCUS FOR 3m BEAM

60
WEIGHTING DIAG(500 500 500 100)

40

20

-60 -40 -20

(b)

Ficjure 3: Root locus diagrams for second two state weighting variations.
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pole positions; all four observer open loop poles are located

off the real axis. This shift of observer poles causes a

.4 change in the branch patterns. The branch from the third mode

open loop pole is moved closer to the imaginary axis, result-

ing in a shift to the right of the third mode closed loop pole

and reduced damping the third mode. Examination of the time

response plots, Fig B16, shows reduced damping in the third

mode for heavy weighting of the first state.

Second state weighting was augmented to a value of

10,000, as shown in Fig 2b. In this case, augmentation of

the weighting produced no noticeable changes in the closed

loop pole locations, and no noticeable changes in the time

response. The observer open loop poles, however, have been

shifted farther away from each other. Augmenting this weight-

ing to a value of 100,000 produces further separation of these

observer poles, which causes a shift in the third mode branch

into the right half plane and instability results.

As with increased first state weighting, increasing the

third state weighting produces a shift to the left of the first

mode closed loop pole, as in Fig 3a. Time response plots for

the first two modes are nearly identical for a first state

weighting of 100,000 and the third state weighting of 2,000.

This indicates that the same behavior can be produced with

heavy weightings on position state or relatively light weight-

ing on the corresponding velocity state. The behavior of the

observer poles is not similar for the two cases; for the third

state weighting increase, the observer open loop pole locations

are not significantly shifted. Consequently, the third mode

-15-



branch of the root locus in Fig 3a has not been significantly

shifted from its position when all weightings have a value of

500. Third mode time response plots, Figs B20, B21 and B22

verify that response of this mode does not significantly

change when the third state weighting is increased to 2,000.

When the fourth state weighting is increased from a value

of 500, the observer open loop poles shift off the real axis.

As in previous cases, this causes a critical shift in the

third mode branch pattern, and for unity gain an unstable

system results. To investigate the effect of changing this

fourth state weighting, the value was decreased from the base

value of 500 rather than increased. Figure 3b shows a root

locus diagram for the fourth state weighting of 100. A shift

to the right of the second mode closed loop pole resulted,

indicating the expected decreased damping of the second vi-

bration mode. The time response plots of this second mode,

Fig B24, shows decreased damping. The shift of this closed

loop pole had sufficient nunerical impact to cause a decrease

in the average of the real part of the closed loop system

poles for unity gain. Since the observer open loop poles are

picked to be ten units to the left of the average real part,

the open loop observer poles are shifted to the right. The

resulting shift in the branch patterns produced higher damp-

ing of the third mode for unity gain, as exhibited in the

third mode time response plot, Fig B25.

The results of this part of the study can be summarized

by examining the effects of weighting changes on the closed

loop vibration mode poles and the open loop observer poles.

-16-
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When an element of the state weighting matrix is increased

with respect to the other elements, the associated closed

loop pole reflects this increase in a shift to the left,

indicating increased damping. For instance, relative in-

creases in the first and third state weightings move the first

mode closed loop pole to the left. Larger relative increases

of the position state weightings are required to produce the

same closed loop pole shift as a smaller relative velocity

state weighting increase. There is a numerical limit to the

tolerable amount of relative increase peculiar to each state

weighting element and the relative magnitudes of the weighting

configuration. When this limit is approached the mechanism

for choosing open loop observer poles produces an increasingly

scattered pattern of pole placement. This scattered pattern

may cause an outward shift of higher mode closed loop poles,

and instability may result for increasingly scattered patterns.

I
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CLASSICAL FEEDBACK COMPENSATION APPLIED TO VIBRATING BEAM

The steady state optimal regulator provides a method for

controlling bending vibration in a beam optimally through mini-

mization of a performance index. As evidenced in the previous

section, the choice of weightings in this performance index

predetermines the limits of optimization; in some cases, the

optimum was still an unstable system. Although intelligent

selection of weightings can produce effective control, an al-

ternative control law may also effectively control bending vi-

brations in a cantilever beam.

In applying the "Total" root locus generator during in-

vestigation of state weighting changes, it became apparent

that selection of location of open loop poles and zeroes was

the net effect of the application of the optimal regulator

control law. The purpose of the investigation of classical

control was to determine if satisfactory control of cantilever

beam bending vibrations might be obtained by using classical

feedback techniques as an alternative to the modern optimal

control theory.

Classical feedback compensation as applied to bending vi-

brations in a cantilever beam deals with the relationships of

the locations of system open loop poles and zeroes. By add-

ing poles or zeroes at specified positions on a system root

locus, branch patterns can be moved. The root locus of the

system for a 3 m beam as described in the previous section and

a steady state optimal regulator with all state weightings set

to 500 is shown in Fig 4a. Sensor and actuator positions

-18-



remain at 1.4 m and 0.6 m from the clamped end, respectively.

The Luenberger observer has been omitted since the states need

not be known in order to apply classical feedback compensation.

Classical feedback compensation was applied by first removing

the steady state optimal regulator poles and zeroes from the

transfer function of the system in Fig 4a. A feedback com-

pensation transfer function was constructed to add zeroes in

the desired locations on the root locus. This feedback trans-

fer function replaced the steady state optimal regulator in

the linear system model.

The technique used in this investigation involved the

use of state space input, transfer function manipulation, and

root locus and time response options of the "Total" program.

First, the system model for the open loop beam was produced

by the execution of the digital computer linear system model

developed by Hungerford. By using the state-space input op-

tions of "Total", the [A], tB1, and tC3 matrices were loaded

for the uncontrolled beam. These matrices constitute a

6 x 6 system of one position state and one velocity state for

each of three modes. The forward-loop transfer function was

generated from this information, and the desired feedback-

loop transfer function was loaded using the transfer function

manipulation options. The open-loop transfer function was

generated and used to construct a root locus. Time response

to step input plots generated by time response options may be

found in Appendix B, Figs B26, B27, B28, arid B29. A compari-

son criterion was applied to these time response plots. Time

-19-
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*60
ROOT LOCUS FOR 3m BEAM

WEIGHTING =DIAG(500 500 500 500)

NO OBSERVER

.40

+.20

-60 -40 -20

(a)

ROOT LOCUS FOR 3m BEAM 60

FEEDBACK COMPENSATION =

GAIN =35

*40

-60 -40 -20
(b)

T'iguro 4: Fcc:t locus diagrai-o for base weighting and feeback coupensation.
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J(a).

ROOT LOCUS FOR 3m BEAM

FEEDBACK COMPENSATION S + 50

*40GAIN=1

420

.;4

-60 -40 -20

(a)

JON

ROOT LOCUS FOR 3m BEAM 6

FEEDBACK COMPENSATION =S(S + 40)

GAIN 1

S40

o

-60 -40 -to

Figure 5: Root locus diagrams for feedback conpensation.
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to settle to within 5% of the final sensor displacement for

a step input was selected as the comparison criterion for this

investigation.

After examining Fig 4a, it was decided that favorable re-

sponse characteristics might be obtained by pulling the branches

* Itoward the left of the root locus after removing the optimal

regulator poles and zeroes. Classical feedback compensation

rules suggest that root locus branches may be moved to the

Sleft by the addition of zeroes to the system (Ref 3). The

simplest application of the rule is the addition of one zero.

On a root locus diagram, the transfer function s + a places a

zero on the real axis at -a. Root locus diagrams were produced

and studied for location of this zero at the origin and 2, 4,

6, 8, 10, 20, 30, 40, and 50 units to the left of the origin

on the real axis. Figure 4b shows the root locus for a = 0,

and Fig 5a is a root locus for a = 50. As expected, the

branch patterns in both cases are moved to the left. However,

small values of "a" move the lower frequency branches more,

and higher values of "a" have a greater effect on the higher

frequencies. Figure 4b represents the former case, and Fig

5b represents the latter. Thus, when "a" is zero and the

gain is 35, the time to settle to within 5% of final displace-

ment is 3.2 sec, as shown in Fig B26. The same settling time is

3.0 sec when the steady state optimal regulator is applied with

all state weightings equal to 500, as shown in Fig B27. When

"a" is 50, there is little first mode damping and the 5%

settling time is nearly infinite, as shown in Fig B28.

It was found that a zero near the origin affected low

-22-



frequencies and a zero far to the left of the origin affected

high frequencies. An attempt was made to affect both by add-

ing two zeroes. One zero was placed at the origin and a second

zero was added to produce the transfer function s(s + a).

Root locus diagrams were studied for location of the second

zero at 20, 40, 60, and 80. Figure 5b shows the unity gain

closed loop poles when a = 40, which is representative of the

considered cases. The 5% settling time for this compensation

is 2.2 sec, as shown in Fig B29.
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RATE AND POSITION-RATE SENSORS

For a cantilever beam in bending vibration with the first

three modes considered and the first two modes controlled and

observed, the resulting linear system model, as before, has

ten states. There are two controlled mode position states,

two controlled mode velocity states, four observer error

states, and one residual mode position state and velocity

state. The output matrix JCJ determines the nature of the

output y; for Hungerford's study and the previous portions

of this study the JCJ matrix for a position sensor had the

following form:

c 1 c 2 0 0 : 0 0 0 0 c5 ( 12)

The more general form of fc] is

[c I c2 c 3 c 4  0 0 0 0 , c5 c6) (13)

For a rate sensor, cl, c 2 , and c 5 are zero, and for a sensor

providing a combination of position and rate information, c

through c 6 are non-zero. An attempt was made to examine the

use of a rate sensor and a position-rate sensor in the linear

system model of the vibrating beam.

Changing from a position sensor required a substantial

modification of the linear system model as compiled by Hungerford.

The observer gain matrix fK3 was found by setting the eigenvalues

of the matrix (A-JKjjC)] equal to a desired set of eigenvalues.

The resulting linear equation is simplified when c3, c4 and

c6 are zero. The more general case requires the solution of

more complicated system of linear equations:
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C1  c 2  C3  c 4  K1  H3

2 2 2 2-cc cI  c2  K2  H
1~ ~ ~ 3 24 1 22 'lw

2 2 2 2
Cl'2 c2W1  c3 2  c4 W K = HI

-c 2W2 2W2 2 K H2 2 (14)Lc3 1 2 c4" 1 2 Clw2 H0-l 4j 20(14)

H r + r2 + r + r 4

H 2 r1(r 2 + r )3 
+ r 4  + r 2 (r 3 + r4 ) + r3r 4

H r4(r1r 2 +r 1r 3+ r2r3 + r rr3
1I r4 (rlr 1 rl3 + 2r3) r1 rl2r3

H = rrrr0 1 23 4

In equations (14), rl, r2, r3, and r4 are the desired observer

eigenvalues. Solution of (14) using a library linear equation

solving routine allowed a choice of sensor type.

For this part of the study, a beam one meter long was

used. All other parameters were kept the same as those in the

first part of this investigation, with all state weightings

equal to 500. Sensor and actuator positions were varied along

the length of the beam at 0.2 m intervals, and the linear sys-

tem model compiled for each configuration. This was done for

a position sensor, a rate sensor, and a position-rate sensor.

The eigenvalues of corresponding systems were compared for

stability information. Computer model outputs for three dif-

ferent sensors at 0.6 m and actuator at 0.4 m given in Appendix

C.

It was found that including rate information in the sensor
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JcO)

ROOT LOCUS FOR im BEAM 514.29

POSITION SENSOR AT .6m, ACTUATOR AT .4m

GAIN = 1

342.86

* 171.43

-514.29 -342.06 -17i.43

(a)

ROOT LOCUS FOR lm BEAM
5 614.29

RATE SENSOR AT .6m, ACTUATOR AT .4m

342.86

*1 171.43

-514.23 -342.86 -171.43

(b)

Figure 6: Root locus diagrams for position and rate sensors.
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model caused unstable third mode vibrations. This instability

results directly from stiffness and ill-conditioning of the

linear system of equations that is solved for observer gains.

A comparison of root locus diagrams for a beam with sensor at

0.6 m and actuator at 0.4 m with position and rate sensors

appears in Fig 6. Although the closed loop observer eigen-

values are the same for both systems, the figure shows a shift

in open loop observer poles that causes a shift to the right

of the open loop zeroes when rate information is sensed.

-
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CONCLUSION

1. Damping of a controlled mode can be changed by making

a change in the corresponding position or velocity state

weighting matrix element in the quadratic performance index

of the steady state optimal regulator. The rest of the system

remains unaffected unless the value of this element approaches

the numerical limits of the model. At this limit, the obser-

ver model begins to break down.

2. Classical feedback compensation applied through addition

of open loop zeroes to the system root locus can provide

effective control of bending vibrations in a cantilever beam.

3. The observer model is adversely affected when rate in-

formation is included in the sensor model, whether this

model includes rate and position sensing or rate sensing

alone.
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RECOMMENDATIONS

1. The study of state weighting element changes was limited

to a beam with two controlled modes and one rcsidual mode

by limitations of the "Total" program. The study should be

expanded to consider a higher number of mode-s, perhaps by ex-

panding the capability of this package.

2. Based on the relationships discovered in this investiga-

tion and in Hungerford's work, control effectiveness of com-

binations of state and control weighting, observer pole off-

sett, and sensor and actuator locations should be investigated.

3. Classical feedback compensation should be applied to very

long beams. Hungerford found that the optimal regulator had

difficulty with long beams. The results of this investigation

suggest that classical control may be more effective because

of increased numerical simplicity.

4. Classical feedback compensation should be applied to a

beam model that includes a higher number of modes and higher

frequency vibrations. The use of more complex types of com-

pensation may also warrant investigation. Other sensor and

actuator locations than the ones used in this study should be

investigated using classical compensation.
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Appendix A

Typical Use of the AFIT "Total" Package

The following pages are a listing of a typical session

with the interaction computer-aided design program for con-

trol system analysis called "Total". Options in the package

are selected by a numerical input, and the lists of options

used can be found at convenient locations in the listing.
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ATIACH, IOrAL, ID=AFIT

PFN IS
TOTAL
PF CYCLE NO. 001

COMMAND- TOTAL

WELCOME TO TOTAL--VERSION 1,4
TYPE HELP FOR INTRO, TYPE 99 FOR NEW FEATURES BULLETIN

OPTION 10

(10-19) MATRIX INPUT OPTIONS
* 10 LIST OPTIIONS
* 11 AMAT CONTiNIJOIJS SYSTEM MATRIX
* 12 BMAT CONTINUOUS INPUT DISTRIBUTION MATRIX
* 13 CMAT OUTFUT CONTRIBUTION MATRIX

14 DMAT DIRECT TRANSMISSION MATRIX
i * 15 KHAT ST. VAR. FEEDBACK MATRIX
" * 16 FMAT DISCRETE SYSTEM MATRIX

* 17 GMAT DISCRETE INPUT DISTRIBUTION MATRIX
* 8 HELP USER SET UP STATE-SPACE MODEL OF SYSTEM
* 19 EXPLAIN USE OF ABOVE MATRICIES

OPTION 18

IS THE SYSrEM (1) CONTINUOUS OR (2) DISCRETE? I

THE EQUATIONS YOU ARE ABOUT TO INPUT HAVE THE FORM:

XDOT(T) = I AMAT ]X(T) + C BMAT JU(T)
Y(T) = I CMAT ]X(T) + I DMAT ]U(T)

WHERE U(T) = GAIN*( R(T) - C KMAT ]X(T)

AND X IS A VECTOR OF N STATE VARIABLES
U IS A VECTOR OF M INPUTS
Y IS A VECTOR OF L OUTPUTS

ENTER NO# OF STATESINPUTSOUTPUTS > 10,iv,

ENTER AMAT WITH 10 ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS FER ROW:
ROW 1 * 0 0 1 0 0 0 0 0 0 0

ROW 2 > 0 0 0 1 0 0 0 0 0 0

ROW 3 -12.002 0 0 0 0 0 0 0 0 0

ROW 4 0 -471.433 0 0 0 0 0 0 0 0

ROW 5 0 0 0 0 -44.73 106.9 1 0 30.16 0

ROW 6 > 0 0 0 0 10.6 -25.31 0 1 -7.14 0

ROW 7 > 0 0 0 0 -167.3 371.0 0 0 104.7 0

ROW 8 0 0 0 0 501.7 -1670 0 0 -338.3 0

ROW 9 > 0 0 0 0 0 0 0 0 0 1



COL > 1 2 3 4 5
ROW

1 0. 0. 1.000 0. 0.
2 0. 0. 0. 1.000 0.
3 -12.00 O. 0. 0, 0.
4 0. -471.4 0. O. 0.

5 0. O. 0. 0. -44.73
6 0. 0. 0. 0. 10.60
7 0. 0. 0. 0. -167.3
8 0. 0. 0. O. 501.7

9 0. 0. 0. 0. 0.
' 10 O. 0. O 0. 0.

COL > 6 7 8 9 10
ROW
1 0. 0. O. 0. 0.
2 0. 0. 0. 0. 0.
3 0. O. 0. 0. O.
4 0. 0. 0. 0. O.
5 106.9 1.000 0. 30.16 0.
6 -25.31 0. 1,000 -7.140 0.
7 371,0 0. 0. 104.7 0.

8 -1670. 0. 0. -338.3 0.
9 0. 0. O. 0. 1.000

10 0. 0. 0. -3697. 0.

ENTER BMAT WITH 10 ROWS AND 1 COLUMNS.

ENTER 10 ELEMENTS FER COLUMN:
COLUMN 1 *:" 0 0 -. 1174 .5535 0 0 0 0 0 -1.112

COL I:. 1
ROW
1 0.
2 0.
3 -. 1174
4 .5535
5 0.
6 O.
7 0.

8 0.
9 0.

10 -1.112

ENTER CMAT WITH 1 ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS PER ROW:
ROW 1 > -. 5542 1.324 0 0 0 0 0 0 -. 3737 0

COL> 1 2 3 4 5

ROW
I -. 9, IA I II.



COL> 6 7 8 9 10
ROW
1 O, 0. 0. -s3737 00

IS THERE A OIRECT-'fRANSMISSION (1D MATRIX)--YES OR NO? NO

DMAT SET TO 1 BY I ZERO MATRIX (OPTION 78)
IS THERE A STATE-VARIABLE FEEDBACK MATRIX--YES OR NO?> YES

* .ENTER KMAT WITH I ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS PER ROW:

ROW I > 10.88 111.1 -45.1 21.8 10.88 111.1 -45.1 21.8 0 0

COL > 1 2 3 4 5
ROW
1 10.88 111.1 -45.10 21,80 10.88

COL > 6 7 8 9 10
ROW
1 111.1 -45.10 221.80 0. 0.

THE STATE-SPACE REPRESENTATION IS COMPLETE.

OPTION > 20

(20-29) BLOCK DIAGRAM MANIPULATION OPTIONS
* 20 LIST OPTIONS
* 21 FORM OLTF = GTF * HTF (IN CASCADE)
* 22 FORM CLTF = (GAIN*GTF)/(1 + GAIN*GTF*tHTF)
* 23 FORM CLTF - GAIN*OLTF / (1 + GAIN*OLTF)
* 24 FORM CLTF = GTF + HTF (IN PARALLEL)
* 25 GIF(S) & NTF(S) FROM CONTINUOUS STATE-SPACE MODEL
* 26 GTF(Z) & HTF(Z) FROM DISCRETE STATE-SPACE MODEL
* 27 WRITE ADJOINT(SI-AMAT) TO FILE ANSWER
* 28 FIND HTF FROM CLTF I GTF (FOR CLTF=GTF*HTF/(I+GTF*HIF))
* 29 FIND HTF FROM CLTF & GTF (FOR CLTF= UTF /(I+GTF*HTF))

OPTION .*'* 25

GTF(S) AND HTF(S) CALCULATED FROM STATE-SPACE
TYPE: GTF OR HTF FOR RESULTS
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FORWARD-LOflP TRANSFER FUNCTION

GK= ( GNK/GDK )= 1.213

4GTF(S) NUMERATOR
I GNPOLY(I) GZERO(I)
1 1.213 )S** 8 ( .8688E-11) + J( 6.880 )
2 ( 84.99 )S** 7 ( .8670E-11) + J( -6.880 )
3 ( 5418. )S** 6 ( -19.81 ) + J( 1.554 )
4 ( .2494E+.06)S** 5 ( -19.81 ) + J( -1.554 )
5 ( .6119E+07)S** 4 -15.21 ) + J( 2.205 )
6 ( .7856E+08)S** 3 ( -15.21 ) + J( -2.205 )
7 ( .5698E.;09)S** 2 ( -. 4079E-12) + J( 50.81 )
8 ( .3168E+10)S** 1 ( -. 4079E-12) + J( -50,81 )
9 ( .1383E+11) GNK= 1.213

4 iGTF(S) DENOMINATOR
I GDPOLY(I) GFOLE(I)
1 ( 1.000 )S**10 ( -,1916E-09) + J( 3.464 )
2 ( 70.04 )S** 9 ( -*1916E-09) + J( -3.464
3 ( 6017. )S** 8 ( -19.81 ) + J( -1.554 )
4 ( .3142E 06)S** 7 ( -19.81 ) + J( 1,554 )
5 C .9563E+07)S** 6 ( -15,21 ) + J( -2,205 )
6 C .2149E+09)S** 5 ( -15,21 ) + J( 2.205 )
7 ( .3703E+10)S** 4 ( .1402E-11) + J( -21.71 )
8 C .3978E+11)S** 3 C .1398E-11) + J( 21.71 )
9 ( .2056E+12)S** 2 ( -,2216E-12) + J( 60.80 )

10 C .4470E+12)S** 1 ( -. 2216E-12) + J( -60.80 )
11 C .1951E+13) GDK= 1.000

OPTION HTF

FEEDBACK-LOOP TRANSFER FUNCTION

HK= ( HNK/HDK )= 14.31

HTF(S) NUMERATOR
I HNPOLY(I) HZERO(I)
1 C 17.36 )S** 9 ( .8111E-02) + J( 0. )
2 ( 1276. )S** 8 -7.386 ) + J( 5.583 )
3 o ,1169E+06)S** 7 C -7.386 ) 4 J( -5.583 )
4 ( ,5326E407)S** 6 ( -1,689 ) + J( -12.35
5 ( .1601E+09)S** 5 C -1.689 ) + J( 12.35 )
6 C ,2489E+10)S** 4 ( -22,63 ) + J( -22.62 )
7 C .3020E+11)S** 3 C -22.63 ) + J( 22.62 )
8 .2253E+12)S** 2 C -5.053 ) + J( -62.70 )
9 ( .9350Ei12)S** 1 ( -5,053 ) + J( 62.70 )

10 C -. 7598E+10) HNK= 17.36

HTF(S) DENOMINATOR

I HDPOLY(I) HPOLE(I)
1 ( 1.213 )S** 8 ( .8688E-11) + J( 6.880 )
2 ( 84.99 )S** 7 ( .8670E-11) + J( -6.880 )
3 ( 5418. )S** 6 C -19081 ) + J( 1.554
4 ( .2494E406)S** 5 C -19,81 ) + J( -1.554 )
5 ( .6119E407)S** 4 C -15.21 ) + J( 2.205
6 C .7856E+08)S** 3 C -15.21 ) + J( -2.205 )
7 C .5698E+09)S** 2 ( -. 4079E-12) + J( 50,81 )
8 C .3168E+10)S** 1 -. 4079E-12) + J( -50.81 )



OPTION > 21

OPTION >
OLTF.

DLTFFOPEN-LOOP TRANSFER FUNCTION

OLK= GAINV( OLNK/OLDK )= 17.36
GAIN= 1.000

OLTF(S) NUMERATOR
I OLNPOLY(I) OLZERO(I)
1 ( 21.07 )S**17 ( .8111E-02) + J( 0. )
2 ( 3024. )S**16 ( -7.386 ) + J( 5.583 )
3 ( .3444E+06)S**15 ( -7.386 ) + J( -5.583 )
4 ( .2764E+08)S**14 ( .8840E-11) + J( -6.880 )
5 ( .1705E+10)S**13 ( .8839E-11) + J( 6.880
6 ( .8381E+11)S**I2 ( -15.21 ) + J( 2.205 )
7 ( .3269E+13)S**11 ( -15.21 ) + J( -2.205 )
8 C .9882E14)S**10 ( -1.689 ) + J( -12.35 )
9 ( .2274E+16)S** 9 ( -1.689 ) + J( 12.35 )

10 C .4007E+17)S** 8 ( -19.81 ) + J( -1.554 )

11 ( .5513E+18)S** 7 ( -19.81 ) + J( 1.554 )
12 ( .5984E+19)S** 6 C -22,63 ) + J( -22,62 )
13 C .5073E+20)S** 5 C -22.63 ) + J( 22.62 )
14 ( 03319E+21)S** 4 ( -,2142E-11) + J( -50.81 )
15 ( *1664E+22)S** 3 ( -. 2104E-11) + J( 50.81 )
16 ( .6074E+22)S** 2 ( -5.053 ) + J( -62.70 )
17 ( .1290E+23)S** 1 ( -5.053 ) + J, 62.70 )
18 -. 1051E+21) OLNK= 21.07

...... .... . OLTF(S)--E'ENOMINATOR-. ...

I OLD'POLY(I) OLPOLE(I)
1 ( 1.213 )S**18 C -. 1916E-09) + J( 3.464

2 ( 170.0 )S**17 C -. 1916E-09) + J( -3.464
3 ( .1867E+05)S**16 ( -15.21 ) + J( -2.205 )
4 ( .1521E+07)S**15 C -15.21 ) + J( 2.205 )
5 C .9449E+08)S**14 ( .8546E-11) + J( 6.880 )
6 ( .4783Efl0)S**13 C .8546E-11) + J( -6.880 )
7 .1958E+12)S**12 C -19.81 ) + J( 1.554 )
8 ( *6350E+13)S**i1 C -19.81 ) + J( -1.554 )
9 C .1641E+15)S**10 ( -19.81 ) + J( 1.5b3 )

10 ( *3422E+16)S** 9 ( -19.81 ) + J( -1.553 )
11 ( .5714E+17)S** 8 ( -15.21 ) + J( 2.206 )
12 ( .7453E+18)S** 7 ( -15.21 ) + J( -2.206 )
13 ( .7428E+Tc)S** 6 C .1656E-t1) + J( 21.71 )
14 ( .5674E+20)S** 5 + *1656E-11) + J( -21.71 )
15 ( .3414E+21)S** 4 ( -. 9013E--12) + J( 50.81 )
16 ( .1609E+22)S** 3 ( -. 1101E-11) + J( -50.81 )
17 ( .5371E+22)S** 2 C .5889E-12) + J( 60.80 )
18 C .1236E+23)S** I .5089E-12) + J( -60.80
19 C .2697E+23) OLDK= 1.213



FACTORED' IN4PUT OF OLTF
ENTER NUM & IIENOM DEGREES (OR SOURCE): 9P10

ENTER NUMERATOR CONSTANT: 21,07

ENTER EACH ROOT--REIM
OLZERO( 1)= .0081111,0
OLZERO( 2)= -7.386,5.583
OLZERO( 3)= ( -7.386 ) + J( -5.583 ) ASSUMED
OLZERO( 4)= -1.688,12;35
OLZERO( 5>= ( -1.689 ) + J( -12,.35 ) ASSUMED
OLZERO( 6)= -22'63y 2.62
OLZERO( 7)= ( -22.63 ) + J( -22.62 ) ASSUMED
OLZERO( 8)= -5.053,62.7
OLZERO( 9)= ( -5.053 ) + J( -62.70 ) ASSUMED

OLTF NUMERATOR (OLNFOLY) OLTF ZEROS (OLZERO)
21.07 )S** 9 ( .8111E-02) + J( 0. )

( 1549. )S** 8 ( -7.386 ) + J( 5.583 )
( .1419E406)S** 7 ( -7.386 ) + J( -5.583 )

. ( .6464E+07)S** 6 ( -1.689 ) + J( 12.35
( .1944E+09)S** 5 ( -1.689 ) + J( -12.35 )
( .3021E410)S** 4 ( -22.63 ) + J( 22.62 )
( .3666E+11)S** 3 ( -22.63 ) + J( -22.62
( .2735E+12)S** 2 ( -5,053 ) + J( 62.70 )
( .1135E+13)S** 1 ( -5.053 ) + J( -62.70
( -. 9221E+10) POLYNOMIAL CONSTANT= 21.07

ENTER DENOMINATOR CONSTANT: 1,233

ENTER EACH ROOT--REIM
OLPOLE( 1)= 0,3.464
OLPOLE( 2)= ( 0. ) + J( -3.464 ) ASSUMED
OLPOLE( 3)= -19i81,1.553
OLPOLE( 4)= ( -19.81 ) + J( -1.553 ) ASSUMED
OLPOLE( 5)= -15.21,2.206
OLPOLE( 6)= ( -15.21 ) + J( -2.206 ) ASSUMED
OLPOLE( 7)= 0,21.71
OLPOLE( 8)= ( 0. ) + J( -21.71 ) ASSUMED
OLPOLE( 9)= 0,60.8
OLPOLE(10)= ( 0. ) + J( -60.80 ) ASSUMED

OLTF DENOMINATOR (OLDPOLY) OLTF POLES (OLPOLE)
( 1.213 )S**10 0 0. ) + J( 3.464 )
( 84.96 )S** 9 ( 0. ) + J( -3.464 )
( 7298. )S** 8 ( -19,81 ) + J( 1.553 )

.3810E+06)S** 7 ( -19.81 ) + J( -1.553
( .1160E+08)S** 6 ( -15.21 ) + J( 2.206 )

.2606E+09)S** 5 ( -15*21 ) + J( -2.206 )
( .4491E+10)S** 4 ( 0. ) + J( 21.71 )

.4824E+11)S** 3 ( O ) + J( -21,71
( .2493E+12)S** 2 o 0. ) + J( 60.80 )
( .5419E+12)S** 1 ( 0. ) + J( -60.80 )

.2365E+13) POLYNOMIAL CONSTANT= 1,213

GAIN= 1.0 OLK= GAIN*(OL.NK/OL[K)= 17.37015663644

OPTION ", AA=.10 THESE COMMANBS SET THE PLOT BOUNDARIES

AA= 10.00000000

OPTION > BB=70 -38-



it'= 70.00000000

OPTION > DD=-70

DlD= -70.00000000

r* OPTION PLOT,ON

OPTION ANSWERON

ANSWER ON--OUTPUT WILL GO TO FILE--ANSWER

OPTION 42

ENTER GAIN OF INTEREST (GAIN),TOLERANCE (GTOL):> 1,.01

TITLE OF THIS PARTICULAR PLOT--PRINTED INSIDE DOX:
> --------- ENTER TITLE (50 CHARACTERS MAX) -------- -
> ROOT LOCUS, 3M BEAM WT = IIIAG(500 500 500 2000)

ROOT LOCUS, 3M BEAM WT = DIAG(500 500 500 2000)

OPTION STOP

LOCAL FILE--PLOT--CONTAINS CALCOMP PLOT(S)
LOCAL FILE--ANSWER--CONTAINS OUTPUT
ALL INFO IN TOTAL HAS BEEN SAVED IN LOCAL FILE--MEMORY.

STOP
9.632 CP SECONDS EXECUTION TIME

COMMAND- ROUTE, PLOT, S'T=CSB , DC=F'T PTID=BB

COMMAND- ROUTEANSWERDC=PR,ST=CSBTID=BBFII=F11

COMMAND- LOGOUT
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Appendix B

Root Locus Diagrams and Time Response Plots
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-21.43 -14.29 -7.14

Finitre 132. Rxot locus diagrams for first state weighting variation.
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ROOT LOCUS FOR 3m BEAM
* 5.71

WEIGHTING = DIAG(I .01 1 1)
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WEIGHTING DIAG(1 100 1 1 * 5.71
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-25.71 -17.14 -8,57

Fi-jure B3. Frot locus diagrans for second state ,weiqhtinc variation.
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ROOT LOCUS FOR 3m BEAM 25.71
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-25.71 -17.14 -8.57

Figure 134. Foot locus diagrams for third state weighting variation.
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ROOT LOCUS FOR 3m BEAM
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WEIGHTING DIAG(I 1 1 .01)
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-25.71 -17.14 -8.57

ROOT LOCUS FOR 3m BEAM

WEIGHTING = DIAG(I 1 1 100) * 25.71

17. 14

*" 8.57

-25.71 -17.14 -8.57

Figure B5. Foot locus diagrams for fourth state weighting variatio
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Figure B6. Rat locus diagrams for first state weighting variation.

-50-



ROOT LOCUS FOP. 3m BEAM

WEIGHTING =DIAG(500 1000 500 500)2.1

* 17.14

* 8.61

-2571 -17 .14
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Figure B37. lbot locus diagramrs for second state AA-iqhting variation.
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* ROOT LOCUS FOR 3m BEAM
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-26.71 -17.14 -8.67

Figure B8. Root locus diagrams for third state weightiAg variation.
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WEIGHTING =DIAG(500 500 500 2000)
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ROOT LOCUS FOR 3m BEAM )60
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Figure B9. poot locus diagrams for fourth state weighting variation.
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ROOT LOCUS FOR 3m BEAM
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* 17.14
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Figjure B310. R~ot locus diagram for large first tx~o state weightings.

-54-



CD

ACTUATOR FORCE

cfi

CD )

CD

CD

0.00 4.00 8.00 12.00 15.00
T IME, SEC

r.C)

CD DISPLACEMENT AT SENSOR

ECD

-JL

c:)

0.UU0 4. 00 F. 0 12.00 15.00

I I E. SEC

Fiqure B11. Tim response for weighting = DIAG(500 500 500 500).
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Fiqure B12. Time response for weighting = DIAG(500 500 500 500).
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Figure B13. Time responnse for weighting DIAG(500 500 500 500).
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Figure B14. Tim response for weighting DIAG(!00,000 500 500 500).
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Figure B15. Tim response for weighting ; DIAG(100, 000 500 500 500).
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Figure B12. Time response for weighting = DIAG(500 500 2000 500).

-65-



THIIRD MODE

rCD

tD

~TME SEC

CD

C:)

0.0 4.00 8.00 12.00 16.00
TI ME, SEC

C-66



0

ACTUATOR FORCE

co

CD)

L-

C.

CD

oU

0

0.00 4.00 B.O0 12.00 16.00
TIME, SEC

C: DISPLACEMENT AT SENSOR

a--

Ij~I
(.9
(F

IICL

-'- -- - -- - -- - T - -- T

0. 00 4.00 F3. 00 12.00 16.00
1 1 ME, SEC

Figure B23. Tim response for weighting = DLNXG(500 500 500 100).
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Figure B24. Time response for weighting DIAG(500 500 500 100)
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Appendix C

Computer Output for Position, Rate, and Position-Rate Sensors
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Active control of bending vibrations *n a cantilever beam
is examined using a digital computer model of I-eam and controller.
The controller uses the discretized beam equation of motion in a
linear control system, which uses a Luenberger observer to
reconstruct modal amplitudes and velocities from the sensor
output. Feedback gains obtained fror; a steady state optimal
regulator drive a force actuator. The model is used to examine
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three areas of active control of bending vibrations. First,
impact on control e4'fectiveness is investigated for iterative
changes in elements of the state weighting matrix, part of the
quadratic performance index minimized for the steady state
optimal regulator. Second, the steady state optimal regulator
is replaced with classicP1 control through addition of open
loop zeroes to the system transfer function. Third, the sensor
model is changed to include positIon and rale information and
rate information only. State weighting matrix element changes
selectively produce increased damping of the mode apsociated
with the changed element. ".Breakdown of the observer model, and
instability, occurs when -r. chanpe in an element exceeds a
limit peculiar to that elemeiht and its relative magnitude.
Control through classical feedlack comrensation is at least
as effective as optimal control by the steady state optimal
regulator. Addition of rate information to the sensor model
causes instability because of numerical inaccuracies in the
solution of tle linear equalion producing !he Luenberger
observer state estimation.

4

1

UNCLASSIFIED
SCCURITY CLASSIFICATIOV OP -- I- PAG9(Whf DOe Sed)eO


